
A Process to Combine AOM and AOP: A Proposal Based
on a Case Study

Jingyue Li

Norwegian University of Science and
Technology

Sem Sælands vei 7-9
NO-7034 Trondheim, Norway

+47, 73598716

Jingyue@idi.ntnu.no

Siv Hilde Houmb
Norwegian University of Science and

Technology
Sem Sælands vei 7-9

NO-7034 Trondheim, Norway
+47, 91307714

sivhoumb@idi.ntnu.no

Axel Anders Kvale
Norwegian University of Science and

Technology
Sem Sælands vei 7-9

NO-7034 Trondheim, Norway
+47, 93034377

axelkv@stud.ntnu.no

ABSTRACT
Traditional object-oriented programming (OOP) paradigm
focused on structuring systems into distinguished objects that
work together to realize a system. However, when dealing with
non-functional or quality requirements, such as security and fault
tolerance, these are not easily structured into separate objects, but
do rather crosscut a set of objects. Aspect-oriented programming
(AOP) separate crosscutting concerns into single units called
aspects. Aspect-oriented modelling (AOM) techniques allow
system developers to design and verify an aspect-oriented system
on the modelling level. During a case study of re-engineering an
object-oriented system using aspect-oriented programming, we
learned that well-designed aspect-oriented modelling (AOM) is
essential to the success of aspect-oriented system. We also
learned that current aspect-oriented programming tools (AOP)
pose limitations on the design of an ideal aspect-oriented model.

Based on lessons learned from this study we propose a process
that handles aspects at two levels, both at the modelling level
(AOM) and the programming language level (AOP). At the AOM
level, aspects are identified and weaved together by AOM
weaving to verify and do trade-off between different mechanisms.
However, models are not woven together for the purpose of code
generation based on a combined model. The actual weaving is
done by the AOP compiler.

Keywords
Aspect-Oriented Development (AOD), Aspect-oriented Modeling
(AOM), Aspect-Oriented Programming (AOP), Model-Driven
Development (MDD)

1. INTRODUCTION
Aspect-oriented programming (AOP) is claimed to be able to
increase the maintainability of systems compare to Object-
oriented programming (OOP) [5, 16]. In COTS component-based
development, the invocation of COTS component functionalities
or methods are scattered in the system. If crosscutting concerns in
glue-code can be separated into aspects, it will be easy to
understand and change the system. To empirically investigate
how to build an easy-to-change COTS component-based system
using AOP we performed a case study where we compared the
easy of software evolution in an object-oriented aspect-oriented
version of the same system. Results from this study indicate that

benefits of AOP cannot be acquired without a good aspect-
oriented design. Furthermore, limitations of current AOP tools
pose some difficulties related to implementing a good design.
Based on lessons learned from this study we propose an approach
that combines the AOM and AOP. AOM is used in the
requirement and design phase to ensure a good aspect-oriented
design. Conflict testing and trade-off analysis between aspects are
performed on the modelling level, which includes a primary
model and several aspect models. These models are implemented
and weaved together using AOP and AOP weaver.
The reminder of this paper is organized as following. Section 2
gives a short introduction to AOP and AOM. Section 3 describes
the case study and the lessons learned. Section 4 presents the
combined AOM and AOP process, while Section 5 gives an
example. Conclusions and future work are presented in Section 6.

2. BACKGROUND
Aspect-oriented development (AOD) emphasizes the separation
of concerns and is designed to handle complex structures. Both
AOP and AOM are part of the AOD paradigm.

2.1 Aspect-Oriented Programming (AOP)
Aspect-oriented programming (AOP) is a new technology for
separation of crosscutting concerns into single units called
aspects. An aspect is a modular unit of crosscutting
implementation. It encapsulates behaviours that affect multiple
classes into reusable modules. Aspectual requirements are
concerns that introduce crosscutting in the implementation.
Typical aspects are synchronization, error handling or logging.
With AOP, each aspect can be expressed in a separate and natural
form, and can then be automatically combined together into a
final executable form by an aspect weaver. As a result, a single
aspect can contribute to the implementation of a number of
procedures, modules or objects, increasing reusability of the
codes. The differences between AOP and traditional
programming are shown in Figure 1. Compared to traditional
approaches AOP allows separation of crosscutting concerns at
source code level. The aspect code and other part of the program
can be woven together by an aspect weaver before the program is
compiled into an executable program.

 1

Figure 1. Comparing to the traditional approach.
An AOP language has three critical elements for separating
crosscutting concerns: a join point model, a means of identifying
join points, and a means of affecting implementation at join points
[5].
2.2 Aspect-Oriented Modeling (AOM)
Aspect-oriented modelling (AOM) techniques allow system
developers to address crosscutting and quality objectives such as
security separately from core functional requirements during
system design [8]. An aspect is a pattern of structure and
behaviour such that it is a crosscutting realization of common
structural and behaviour characteristics [17]. An aspect model
consists of a UML class diagram template (or other structural
diagrams of UML) and one or more interaction diagrams
templates. The structural diagram templates generate structural
diagrams that are used to describe the structure of the system.
Interaction diagram templates are used to generate interaction
diagrams that describe how elements in the distributed structures
interact to realize the desired behaviour.
An aspect-oriented design model consists of a set of aspects and
primary models. An aspect model describes how a single
objective is addressed in the design, while the primary model
addresses the core functionality of the system as given by the
functional requirements.
In AOM, one makes use of composing rules for weaving aspect
models with the primary model. These rules are stored separately
from the aspect and the primary model, which makes both the
aspect models and the rules reusable. The aspects and the primary
model are composed before implementation or code generation.
Composition is most often done manually, but there exists tools
that automate part of the composition. Figure 2 gives an overview

Figure 2. A general overview of the AOM approach
of AOM.
In [14] Rashid, Moreira, and Arauho, looks into aspects in the
requirement capturing phase and target multidimensional
separation beginning early in the software cycle as part of the
early aspects initiative. Their work supports modularization of
crosscutting properties at the requirements level and the main aim
is to support early trade-offs. Other related AOM approaches are
[1, 3, 4, 6, 7, 8, 15], where [6, 7, 8] targets security issues in
particular.

3. CASE STUDY
After an result of an empirical study on COTS (Commercial-Off-
the-shelf) component based development in Norwegian IT
industries we discovered a three steps COTS component selection
process; (1) selecting handful COTS components by Internet
searching; (2) selecting 2 to 3 possible candidates based on some
key issues; (3) integrating these possible candidates into intended
environment and test them in order to select one [12]. To integrate
COTS components into possible future system instead of testing
them individually, a lot of glue-code must be produced. A
challenge, however, is to be able to reuse glue-code in such a way
that no much extra effort need to be spent on changing testing
environment from one COTS component to another.
AOP is claimed to be enable separation of concerns and increase
the maintainability of the system comparing to object-oriented
programming. The initial motivation of this study is to investigate
whether aspect-oriented programming can help to increase the
glue-code reusability in a COTS component-based system.

3.1 Case study design
The case study includes three steps:

Step 1: We re-engineered an object-oriented application using
AOP. Glue-codes relevant to some components were
implemented using AspectJ (version 1.1 [19]).

Step 2: We used other COTS components to replace some
crosscuting components in both the object-oriented and aspect-
oriented version of the system.

Step 3: The number of Line-of-code and classes that needed to be
changed in the object-oriented and aspect-oriented version during
component replacement were measured and compared.

Composed model

Composing

Primary
model

Aspect
model

Mapping
rules

Composed model

Composing

Primary
model

Aspect
model

Mapping
rules

The system chosen for the study was an open source Java Email
Server (i.e., JES server [18]). It is a stand-alone java application
that was built by using Object-oriented based development.
Although the application is an open source system, we treated all
components as COTS components (i.e. no source code was
modified) in this study.

3.2 Lessons learned
During the re-engineering of the system we discovered several
challenges and difficulties related to AOP. These issues need to
be solved to enhance the assumed benefits of AOP (i.e. better
maintainability comparing to object-oriented programming).
The key lessons learned from the case study were:

• A good aspect-oriented design is essential to achieve the
benefits of aspect-oriented programming

 2

• Limitations of aspect-oriented programming tools should
be taken into consideration in aspect-oriented design.

3.2.1 A good aspect-oriented design is essential to
achieve the benefits of Aspect-oriented programming.
In the process of re-engineering the JES server we used source
code reading to identify the proper aspect. A typical ideal aspect
example is logging. Logging objects are inserted into every class
that makes us of this feature. If we implement the logging
functionality using aspect, the aspect can easily trap every join
point and log all the run-time information available. This makes it
is easy to implement logging into several classes with only a
minimum of code lines and without changing any of the original
classes. However, there are a few practical concerns that arises.
When logging is inserted into each class in the traditionally OOP-
way, each line of logging is usually very accurate. The developer
can choose to write whatever information to the log to get a
reasonable clue of what the system did (or failed to do). With the
general logging using AOP this cannot be easily accomplished.
The logging will be limited to the information provided by the
joinpoints (name of the function, name of the enclosing function,
arguments, class name etc.).

To implement accurate logging in AOP we had to define each
pointcut and treat these joinpoints individually. The
implementation is shown in the following code:

//defining joinpoint #1

private pointcut PC1(LogInterface li, int x, int y) :

 this(li) && args(x,y) && execution(public void
Function1(int x, int y));

//logging in joinpoint #1

after(LogInterface li, int x, int y) returning: PC1(li, x, y){

 li.log.info(“Changed X and Y to (“ + x + “,” + y + “)”);

}

//defining joinpoint #2

private pointcut PC2(LogInterface li, String s) :

 this(li) && args(s) && execution(public void
Function1(String s));

//logging in joinpoint #1

after(LogInterface li, String s) returning: PC1(li, s){

 li.log.info(“Changed name to ” + s);

}

The result is that we have to deal with several and sometimes
quite complex joinpoints to retrieve the required information and
write more lines of code to ensure that the aspect-oriented version
has the same functionalities as the object-oriented version.
Furthermore, we need to change more lines of code in the AOP
version when we used another logging COTS component to
change the current logging component in JES (see step2 in case
study design in chapter 3.2). This means that we loose the benefit
(and strengths) of using AOP.

Although logging is regarded as an ideal aspect in some other
systems [2] we experience otherwise in this case study. The basic
reason is that the system was designed based on OOP thinking
with no proper aspect-oriented design from beginning. Therefore,
it is hard to re-engineer the system into an ideal aspect-oriented
system using an object-oriented design.

3.2.2 Limitations of aspect-oriented programming
tools should be taken serious consideration in aspect-
oriented design
When we implemented the aspect-oriented system using AspectJ
1.1 some unexpected limitations of AspectJ 1.1 made it difficult
to implement part of the design.

Static problem

Intertyping is a functionality of AspectJ 1.1 that enables you tom
insert a reference to an object or variables into a class from an
aspect like following.

//Intertyping a log object into the class User
private Log com.ericdaugherty.mail.server.info.User.log;
When interpying references into several classes, an elegant design
is to create an interface and let all classes implement this
interface. By utilizing an interface when intertyping references,
we can get a common handle to the classes that we can use when
accessing the log-object.

When we implemented the system re-engineering using this
design we found that the current version of AspectJ (version 1.1)
does not support intertype declarations of static members to
multiple classes. The static log must be intertyped into each class
using a static log as follows:
//Intertyping a static log into the class Message
private static Log com.ericdaugherty.mail.server.info.Message.log
=LogFactory.getLog(com.ericdaugherty.mail.server.info.Message
.class);
When intertyping directly into a class instead of using an interface
the benefit of getting a common handle to the classes disappears.
Although some previous study mentioned the static limitations of
AspectJ (version 1.1), we did not take this into serious
consideration since we made the design before looking into
current available tools.
Accessing variable inside a block statement

A pointcut can create a reference to all variables used in a
pointcut. Possible variables are:
• The object making the call (this)
• The object receiving the call (target)
• Variables passed as parameters to the method
• The returning value of the method
If other variables is needed several pointcuts is necessary in order
to get references to these variables.
public void DoSomething(String s){
 //do something
 EmailAddress address = new EmailAddress(s);

 3

 User user = new User(address); //This is the joinpoint
we want to trap
 //do something more
}
If we want to access the input strings when the user is created in
the above code we need to combine several pointcuts.
//Pointcut picking out the extra variable String s
private pointcut DoSomething(String s) :
execution(void DoSomething(String)) && args(s);
//Pointcut picking out the joinpoint and the variables user and
address
private pointcut NewUser(User user, EmailAddress address) :
target(user) && call(User.new(EmailAddress)) && args(address);
//Pointcut picking out the joinpoint and all the variables
private pointcut MyPointcut(String s, User user, EmailAddress
address) :
 cflow(DoSomething(s)) && NewUser(user, address);
It is not possible to get a reference to the variable if there is no
joinpoint in the cflow has accessed the according variables before.
public void DoSomething(Sting s){
 //do something
 EmailAddress address = new EmailAddress(s);
 User user = new User(); //This is the joinpoint we want
to trap
}
If the code in COTS component is as above it is not possible to
get a reference to s, address, and user together if we use AOP to
build the glue-code. The reason for this is that there is no
joinpoint where all variables are used (or is in the cflow of a
joinpoint where the others are used). The solution in this case is to
rewrite the code in the COTS component. However, that might
not be desirable or even possible in COTS component-based
development.

4. A PROCWSS TO COMBINE AOM AND
AOP

Most current implementations of aspect-oriented programming
start directly from programming level as we did in the case study.
First, aspects are identified either by source code reading or
document reading. Second, the system will be implemented in the
code level based on the current defined aspects. As we have
learned from the case study, the risk of implementing a system
this way is that many AOP benefits will lose without a good
aspect-oriented design.
AOM techniques allow system developers to address crosscutting
requirements during system design. The design models consist of
a set of aspects and a primary model. The aspect models and
primary models can be weaved together by AOM weaving. It is
therefore possible to test the validity of a particular aspect model
and do trade-off analysis between different models.

To meet the limitation of AOP we combine AOP and AOM to
utilize the strength of both approaches. Figure 3 illustrates the
combined AOM and AOP approach, where AOM handles the
requirement and design phase of the development and AOP
handles the implementation phase.

In
ce

pt
io

n

E
la

bo
ra

tio
n

iterate

Choose a part

Specify funtional req.

Trade-off decision

iterate

In
ce

pt
io

n

E
la

bo
ra

tio
n

iterate

In
ce

pt
io

n

E
la

bo
ra

tio
n

iterateiterate

R
eq

ui
re

m
en

t

C
od

e
ge

ne
ra

tio
n

D
es

ig
n

iterate

Specify quality req.

Choose a part

Specify domain model

Trade-off decision

Aspect Update aspect

• In the requirement phase AOM is used to extract aspects and

do trade-off analysis between different aspects.
When developing security critical and fault tolerant systems
non-functional requirements are of great importance.
Security and fault tolerance issues may be regarded as
crosscutting concerns and treated as aspects. Furthermore,
security and fault tolerance issues may also be conflicting
and one needs to make trade-off between the two as early as
possible in the development as possible. For example,
splitting services on two machines increases fault tolerance,
but decrease the level of security since one then needs to
secure two machines instead of one and in addition, the
communication between the two machines. The specification
of aspects for security requirements can be done using e.g.
UMLsec [10, 11]. UMLsec makes it possible to do
verification of the fulfilment of these requirements at later
stages in the development.

• In the design phase, AOM is used to describe the system
design. A primary model and a set of aspect models may be
defined using AOM. In this phase we do conflict testing,
functional testing, and verification of fulfilment of
requirement specification (both functional and non-
functional requirements). Conflict testing is done using
AOM weaving. An aspect model must be instantiated before
it can be composed with a primary model. The instantiated
forms of aspect models are referred as context-specific
aspect. The instantiation of an aspect model is determined by
mapping rules, where a mapping rule specifies the points
where a primary model at which aspect elements will be
incorporated.
AOM is used in the requirement and design phase to ensure a
proper aspect-oriented design. It can test any conflicting
situations and enhance trade-off between aspects. Performing

AOM

Jo
in

 p
oi

nt
s a

nd
 r

ul
es

W
ea

vi
ng

 a
t c

om
pi

le

AOM weaving

AOP

Specify aspect model

Specify weaving rules

Resolve compiler problem

Compiler limitation

1 1

2

3

In
ce

pt
io

n

E
la

bo
ra

tio
n

iterate

Choose a part

Specify funtional req.

Trade-off decision

iterate

In
ce

pt
io

n

E
la

bo
ra

tio
n

iterate

In
ce

pt
io

n

E
la

bo
ra

tio
n

iterateiterate

R
eq

ui
re

m
en

t

C
od

e
ge

ne
ra

tio
n

D
es

ig
n

iterate

Specify quality req.

Choose a part

Specify domain model

Trade-off decision

Aspect Update aspect

AOM

Jo
in

 p
oi

nt
s a

nd
 r

ul
es

W
ea

vi
ng

 a
t c

om
pi

le

AOM weaving

AOP

Specify aspect model

Specify weaving rules

Resolve compiler problem

Compiler limitation

1 1

2

3

Figure 3. Overview of the combined AOM and AOP
development process

proper conflicting and trade-off analysis in requirement and
design phase is more cost-effective than in the coding phase.

 4

•

y that the

 weaving is only used to test the validity of

Alth
poss 1 in Figure 3 illustrates the fact

ustrated

ed in the AOM part of the development. To meet the

xample,

•
he validity and do trade-off analysis.

appr

 system where the primary
stem should be able to

fferent users and to provide a secure log on

tional

dress

•

o credit the card when

The
spec

rough the Internet it has to be encrypted

•

ity for the users trying to utilize the

We
requ
aspe nal requirements.

nsure a

In the coding phase, AOP is used to implement the primary
model and aspect models separately. The final system will be
weaved together by AOP tools on the code level.
Some AOM researchers propose that the aspects and the
primary model are weaved together in such a wa
aspect is integrated into the primary model before code
generation or coding in general. One may then use any code
generation approach or manually implementation approach
to realize the system once the weaving or composition is
done. However, one major problem of this solution is that the
separation of the aspects and the primary model is lost once
the weaving is done. In addition, the only backtracking
possibility once the composition is done is to un-weave using
the mapping rules backwards. Since this is not linked to the
coding level, changes in the code will not be reflected in the
structure of the models and cannot be un-weaved at the
modelling level.
In our process, we propose to keep the separation until the
code phase. AOM
aspect models. In this way, we can keep the primary model
and aspect models separately in the coding phase. It is then
easy to backtrack if there is any changes in the code since the
generated primary code can be mapped directly back to the
primary and aspect models.
ough the process is sequential in general, there are several
ible iterations. Arrow number

that each phase may iterate with itself a number of times before
moving on to the next phase. In the requirement phase, new non-
functional crosscutting requirements may be discovered.
When aspects are identified in the design phase the process
iterates back to the requirement specification phase, as ill
by arrow number 2 in Figure 3, and the non-functional
requirements are updated. This depends on the system in question
and whether the development is done incremental or not. By
doing so one can attend to conflicting aspects, situations where
you can have one non-functional requirement fulfilled, but not
both.
We do not put any limitations on how aspects are defined and
describ
limitations of AOP and AOP tools (see section 3.2.2), which
varies from tool to tool, the process iterate back to the AOM part
of the development whenever limitations of the AOP tool make
the design in AOM can not be implemented. This iteration is
illustrated by arrow number 3 in Figure 3. After the limitation of
AOP tools have been discovered, the actions need to be done are:

• The aspects affected by the changes must by located

• The aspect initiation rules of aspect must be checked or
revised to make a new context-specific aspect. For e
some new AspectJ versions [19] support intertyping and it is
therefore possible to intertype aspects into primary model.
However, prevsiou AspectJ versions do not support this
functionality.

The aspect model and primary model need to be composed
again to check t

In the next section we will illustrate the combined AOM and AOP
oach by giving a small example.

5. EXAMPLE
The example used is an e-commerce
service is selling books online. The sy
distinguish between di
and payment service. In order to provide secure log on and
transfer of data we need to either encrypt information on the
application level or encrypt the link used for transfer. We can use
different types of encryption algorithm and techniques, such as
private and public key encryption techniques or the DES or
Blowfish encryption algorithm. Such issues are crosscutting since
encryption may be used by more than one module in the system.
In this case one use encryption during log on and payment.
In the following we will only present some of the functional and
security requirements for the e-commerce system. The reader is
referred to [13] for more information. The relevant func
requirements from the requirement specification in [13] are:

• Consumer has to register sufficient information for contact
and identification. The following information has to be
entered; name, password, user-name, email address, ad
of residency, zip code and country.

Using registered user-name and appurtenant password, a
consumer can log on to the system.

• When services are ordered the consumer pay by giving credit
card number and expiration date. This information is
subsequently used by the supplier t
paying for services. The card is credited upon delivery of the
service.
relevant security requirements from the requirement

ification in [13] are:

• Confidentiality of communication must be ensured in
transactions between consumer and the system. Since the
communication is th
to prevent other parties from being able to read the content of
the messages between consumer and system. User name,
password and credit card information must be protected by
encryption to ensure the secrecy of the system and user.
Other information exchanged must be encrypted to ensure
privacy of the user.

Authenticity must be ensured to avoid attackers posing as
registered consumers. Weak authentication will suffice. This
is done for simplic
system. User must have a unique user name and password
for authentication. The password must be at least 8
characters long and contain uppercase and lower case letters
as well as at least one number.
have two crosscutting aspects namely the security

irements for confidentiality and authenticity. These two
cts both crosscut all three functio

5.1 Using AOM in the requirement and
design phase
In the requirement and design phase, AOM is used to e
valid and efficient design of the whole system.

 5

5.1.1 Primary model
We use activity diagrams to describe the functional requirement
of the system as depicted in Figure 4. Figure 4 describes partly
(To describe a primary model completely, other diagrams, such as
class diagram, state diagrams, are also needed) the primary model
of the system. The crosscutting aspects, i.e. confidentiality and
authenticity, will be used in the sub-parts that are shadowed in
this model.

Figure 4. The primary model of the system

5.1.2 Aspect model
The main point with aspects is not only that they are crosscutting,
but also increase of the level of reusability and ease of software
evolution. For instance, if we implement a weak authentication
mechanism and later decide that we need to update and strengthen
the mechanism, we only need to update the aspect as long as the
interface between the aspect and the primary model remains the
same.
In this example we illustrate the aspects for confidentiality and
authenticity using simplified protocols. To address the security
requirement for confidentiality of information we use secrete-key
encryption. In this example we do not specify the cryptographic
algorithm used, since this is transparent and handled by the
aspect. Figure 5 depicted an activity diagrams that describe a
simplified confidential requirement of the system. The diagram
describes partly (To describe an aspect model completely, other
diagrams, such as class diagram, state diagrams are also needed)
the confidentiality aspect model of the system. To initiate a
context-specific aspect, pointcuts must be defined. We define that
the confidentiality activity should happen “after” the functions of
the payment and payment confirmation, and “after” the function
of customer logs on.

Figure 5. The confidentiality aspect model

We also use activity diagrams to describe the authentication
requirement of the system as in Figure 6. The pointcut for this
aspect is “after” the function of customers logs on.

Figure 6. The authentication aspect model

5.1.3 Weaved model for primary model and
authentication aspect
We now have the primary model and the aspects models.
According to the process these two models should now be
composed in order to validate the fulfilment of the requirements
and to reveal any logic problem in the model. The verification of
the fulfilment can e.g. be done using the UML extension for
secure systems development, UMLsec [10, 11] and the
verification and validation tool for UMLsec [9]. The weaving on
model level is simply done to reveal any problems before
transforming the models to AOP.
In this example we only demonstrate a manual weaving on the
model level for the authentication aspect. There exist several
weaving techniques, both manual and automated. One can
compose models using matching of names, syntactic compositions
or element properties expressed in OCL, semantic composition. In
this case we have used a manual semantic composition strategy.
The weaved model is shown in Figure 7.

 6

Figure 7. The weaved model

5.2 Using AOP in the implement phase
As we emphasized above, we use AOM in the requirement and
design phase to ensure a valid and efficient design. However, we
will not implement the system based on the AOM-weaved model.
The primary model and the aspect models will be implemented
separately by using AOP tools. The actual weaving is done on the
coding level using AOP weaving.

5.3 Possible iterations
There are several possible iterations in our proposed process.

• Each phase, i.e. requirement phase, design phase may iterate
with itself a number of times before moving on to the next
phase. In the requirement phase, new non-functional
crosscutting requirements, such as performance
requirements, may be discovered. In such cases a new
performance aspect model is therefore needed.

• When aspects conflicts are identified in the design phase the
process iterates back to the requirement specification phase.
For example, too complexes encrypt algorithm may make the
system very slow, which conflict with the performance
tuning aspect. A trade-off balance in requirements is
therefore needed.

• The actual weaving is done on compiler level using AOP.
However, there are limitations in AOP supported compilers
as we showed in the case study. If such situations appear we
iterate back to the design level in order to update the model
before proceeding.

6. CONCLUSION AND FURTHER WORK
In this paper, we present a combined AOM and AOP approach.
The motivation of the study comes from lessons learned in a case
study, i.e., a good aspect-oriented design is essential to get the
benefit of AOP and limitations in AOP tool may require a revise
of the design.
In our approach, AOM is used in the requirement and design
phase while AOP is used in the implementation phase. Aspects
are defined in the requirement phase. In the design phase, AOM is
used to describe the system design. Conflicting and trade-off
analysis are performed in both the requirement phase and the

design phase using AOM weaving. In the coding phase, the AOM
primary model and aspect models are coded using AOP tools
separately. The separately coded primary model and aspect
models are weaved together using AOP weaving afterwards.
The approach may require several iterations of each phase before
moving to the next phase. Aspects may need to be revised if new
non-functional requirements are discovered. The requirement and
design need to be changed if new aspects are identified in the
design phase. In the coding phase, the limitations of available
AOP tools may require changes in system design.
To improve our approach in practice, several future studies needs
to be done:

• An extended Aspect-UML is needed to express aspect
model. Pointcust, jointpoints and advices etc. cannot be
expressed exactly using current UML tools. As aspects are
context-specific and need initiation, Aspect-UML need to be
able to customize the aspect model based on different
contexts. Another requirement for Aspect-UML is that the
connections between aspects and classes should be detailed
enough to make the tracking easy. This requires that both the
advices and pointcuts are represented in the aspect model
and a line shows the exact point(s) each pointcut picks out.

• A composition method to weave primary model and aspect
model is required. As most aspects will be integrated into
primary code based on the runtime information or current
state, the composition method should reflect this dynamic
character.

7. REFERENCES
[1] Clarke, S., Harrison, W., Ossher, H., and Tarr, P., Separating

concerns throughout the development lifecycle. In
Proceedings of the 3rd ECOOP Aspect-Oriented
Programming Workshop (Lisbon, Portugal, June 14-18,
1999). Springer Lecture Notes in Computer Science, Vol.
1743, 299.

[2] Colyer, A., and Clement, A., Large-scale AOSD for
Middleware. In Proceedings of the 3rd International
Conference on Aspect-oriented Software Development,
(Lancaster, UK, March 2004), ACM Press, New York, NY,
2004,56-65.

[3] Fiadeiro, J. L. and Lopes, A., Algebraic semantics of co-
ordination or what is it in a signature? In Proceedings of the
7th International Conference on Algebraic Methodology and
Software Technology (AMAST'98), (Amazonia, Brasil, Jan
1999) Springer Lecture Notes in Computer Science, Vol.
1548, 293-307.

[4] Gray, J., Bapty, T., Neema, S., and Tuck, J., Handling
crosscutting constraints in domain-specific modelling.
Communications of the ACM, 44, 10 (Oct 2002), 87-93.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin, Aspect Oriented
Programming. In Proceedings of 11th European Conference
on Object-Oriented Programming (Jyväskylä, Finland, June
9-13 ,1997), Springer Lecture Notes in Computer Science,
Vol. 1241, 220-242.

[6] Georg, G., France, R., UML Aspect Specification Using
Role Models. In Proceedings of the 8th International

 7

Conference on Object-Oriented. Information Systems (OOIS
2002 (Montpellier, France, September 2-5, 2002), Springer
Lecture Notes in Computer Science, Vol. 2425, 186-191.

[7] Georg, G., France, R., and Ray, I., Designing High Integrity
Systems using Aspects. In Proceedings of the 5th IFIP TC-
11 WG 11.5 Working Conference on Integrity and Internal
Control in Information Systems (IICIS 2002) (Bonn,
Germany, Nov 2002), Kluwer Academic Publishers,
Norwell, MA, USA, 37-57.

[8] Georg, G., and France, R., and Ray, I., An Aspect-Based
Approach to Modeling Security Concerns. In Proceedings of
the Workshop on Critical Systems Development with UML
(Dresden, Germany, September 30, 2002), 107-120.

[9] Houmb, S.H., Jürjens, J. Developing Secure Networked
Web-based Systems Using Model-based Risk Assessment
and UMLsec. In Proceedings of 10th Asia-Pacific Software
Engineering Conference (APSEC 2003) (Chiang Mai,
THAILAND, December 10-12, 2003), IEEE Press, 2003,
488-499.

[10] Jürjens, J. Principles for secure systems design. PhD thesis,
Wolfson College, 2002.

[11] Jürjens, J. UMLsec: Extending UML for secure systems
development. In Proceedings of the 5th International
Conference on Unified Modeling Language (UML 2002)
(Dresden, Germany, September 30 - October 4, 2002),
Springer Lecture Notes in Computer Science, Vol. 2460,
412–425.

[12] Li, J., Bjørnson, F.O., Conradi, R., and By Kampenes, V. An
Empirical Study of COTS Component Selection Processes in
Norwegian IT companies. In Proceedings of International
workshop on models and processes for the evaluation of
COTS components (Edinburgh, Scotland, May 2004), IEE
ISBN-0-86341-422-2, 27-30.

[13] Lillevik, Ø. A model-based approach to handling risks in
security critical systems. Master Thesis NTNU,
http://www.stud.ntnu.no/~lillevik/CORAS/masterthesis.pdf,
2003.

[14] Rashid, A., Sawyer, P., Moreira, A., and Araujo, J., Early
Aspects: A Model for Aspect-Oriented Requirements
Engineering. IEEE Joint International Conference on
Requirements Engineering. IEEE Computer Society Press,
pp 199-202, Essen, Germany, Sept 2002.

[15] Suzuki, J. and Yamamoto, Y., Extending UML with Aspects:
Aspect Support in the Design Phase. In Proceedings of the
3rd ECOOP Aspect-Oriented Programming Workshop,
(Lisbon, Portugal, June 14-18, 1999). Springer Lecture Notes
in Computer Science, Vol. 1743, 299-300.

[16] Tzilla Elrad, Mehmet Aksits, Gregor Kiczales, Karl
Lieberherr, and Harold Ossher, Discussing Aspects of AOP.
Communications of the ACM, 44, 10 (October 2001), 33 -38.

[17] The Object Management Group. The Unified Modeling
Language. OMG, formal/2003-03-61, version 1.5, 2003.

[18] Java Email Server: Getting started, available at:
http://www.ericdaugherty.com/java/mailserver/gettingstarted
.html (this reference need more information)

[19] AspectJ, available at: http://eclipse.org/aspectj/

 8

http://www.computer.org/cspress/CATALOG/pr02011.htm
http://www.computer.org/cspress/CATALOG/pr02011.htm
http://www.stud.ntnu.no/~lillevik/CORAS/masterthesis.pdf
http://www.ericdaugherty.com/java/mailserver/gettingstarted.html
http://www.ericdaugherty.com/java/mailserver/gettingstarted.html
http://eclipse.org/aspectj/

	INTRODUCTION
	BACKGROUND
	Aspect-Oriented Programming (AOP)
	Aspect-Oriented Modeling (AOM)

	CASE STUDY
	Case study design
	Lessons learned
	A good aspect-oriented design is essential to achieve the be
	Limitations of aspect-oriented programming tools should be t

	A PROCWSS TO COMBINE AOM AND AOP
	EXAMPLE
	Using AOM in the requirement and design phase
	Primary model
	Aspect model
	Weaved model for primary model and authentication aspect

	Using AOP in the implement phase
	Possible iterations

	CONCLUSION AND FURTHER WORK
	REFERENCES

